Today’s learning focused on foundational computer science concepts, from networking protocols to algorithmic thinking and mathematical foundations.
DoD RFC 760 - Internet Protocol
RFC 760 represents the original Internet Protocol specification from January 1980, laying the groundwork for modern internet communication.
Historical Significance:
Original Design Principles:
- Simplicity: Minimal functionality for maximum reliability
- Datagram service: Connectionless, best-effort delivery
- End-to-end principle: Intelligence at endpoints, not in network
- Scalability: Design for networks of arbitrary size
Core Protocol Features:
Internet Header Format (RFC 760):
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| IHL |Type of Service| Total Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identification |Flags| Fragment Offset |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Time to Live | Protocol | Header Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Key Innovations:
Addressing System:
- 32-bit addresses: Sufficient for early internet scale
- Network/Host division: Hierarchical addressing structure
- Address classes: Class A, B, C for different network sizes
- Subnet concept: Logical network subdivision
Fragmentation and Reassembly:
|
|
Evolution to Modern Internet:
The principles established in RFC 760 continue to influence modern networking, despite the transition from IPv4 to IPv6 and the addition of numerous extensions and optimizations.
MIT 6.006 - Introduction to Algorithms
MIT’s Introduction to Algorithms provides comprehensive coverage of algorithmic thinking and analysis techniques.
Course Structure:
Fundamental Concepts:
- Asymptotic analysis: Big O, Omega, and Theta notation
- Correctness proofs: Loop invariants and induction
- Problem-solving strategies: Divide and conquer, dynamic programming, greedy algorithms
Core Algorithms:
Sorting and Searching:
|
|
Graph Algorithms:
|
|
Dynamic Programming:
|
|
MIT 6.042J - Mathematics for Computer Science
Mathematics for Computer Science covers essential mathematical foundations for computer science.
Core Mathematical Areas:
Discrete Mathematics:
- Set theory: Foundations of mathematical reasoning
- Logic: Propositional and predicate logic
- Proof techniques: Direct proof, contradiction, induction
- Combinatorics: Counting principles and probability
Mathematical Proofs:
Proof by Induction Template:
Base case: Prove P(1) is true
Inductive step: Assume P(k) is true for some k ≥ 1
Prove P(k+1) is true
Conclusion: P(n) is true for all n ≥ 1
Example - Sum of first n natural numbers:
Claim: 1 + 2 + ... + n = n(n+1)/2
Base case: n = 1
Left side: 1
Right side: 1(1+1)/2 = 1 ✓
Inductive step: Assume true for k
1 + 2 + ... + k = k(k+1)/2
Prove for k+1:
1 + 2 + ... + k + (k+1) = k(k+1)/2 + (k+1)
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2 ✓
Graph Theory:
- Graph properties: Connectivity, cycles, trees
- Graph algorithms: Traversal, shortest paths, minimum spanning trees
- Network analysis: Flow networks, matching problems
Probability and Statistics:
|
|
These foundational resources provide the mathematical and algorithmic thinking skills essential for advanced computer science work, from protocol design to efficient algorithm implementation.