$ python -m this | sed -n ‘4p’

Explicit is better than implicit.

Rust for Pythonistas

V|nay Keerth| @stonecharioteer 2022‘03‘26
BangPypers

Data @ Merkle Science e
J'J 0 ’\y“?,“r,‘;—‘“ ' 4

$ whoami

e Hi!I'm Vinay Keerthi, | go by @stonecharioteer everywhere.

e |blogatstonecharioteer.com

e Self-taught

e | have been using Python for 8 years.

e | build web applications (flask), command line tools (click), sometimes a GUI
(PyQt5/Plotly Dash), and automate pipelines (airflow, flask-scheduler).

e Currently Data Engineering @ Merkle Science, a cryptocurrency analytics firm.

e Previously @ Visa, GKN Driveline, Flipkart
e |'ve been writing Rust code for “30 days. Beware the errors.

https://stonecharioteer.com

What's with the title?

e The Zen of Python states “Explicit is better than implicit”
e Rust embodies this to a fault, and is a natural successor to the ideal.

What is this talk about?

Note: This is not a Rust tutorial.

Why Rust?

| already know Python.

Then why would | learn Rust?
Why not X?

What does it look like?

How do | learn?

Numbers?

I’'ve heard Strings are hard.

Why Rust?

I’'ve been writing Python code my entire career.

| wanted to try something new.

I’d tried some golang resources, but I'd kept coming back to Rust.

| first heard about Rust on news.ycombinator.com (HackerNew/HN).
What did | know?

Rust is fast.

Rust has a steep learning curve.

It's low level.

It's got something called the borrow checker.
Strings are weird?

o O O O O

But | already know Python!

e And that’s good.

e Use what you know for the problems that you want to solve quickly.

e Python can do almost anything. If you need to scale, think about distributing
your tasks across workers.

e Use Pandas, Numpy, and other libraries designed for speed over native data
types.

e Use Cython or PyCuda to write faster code.

e Try PyPy for JIT - it’s faster.

Then why would | learn Rust?

e Shipping python applications is getting harder.
o There is a paradox of choice: poetry, pyeny, virtualenvwrapper, flit, conda.
o There are ways to ship a single binary, but they ship the python interpreter.
e [f you're self-taught, like me, you should learn a lower level language.
Python doesn’t teach you about memory management.
What are threads, really?
How do you implement a truly safe multi-threaded application?
How does the memory model work?

e Rust gives you simple and safe concurrency.

e TJo become a better programmer.
o More on this later.

o O O O

Why not X?

X is usually Golang, Java, C++ or C.

Follow your instinct. Learn what you want to.

Performance matters, and it should.

Ownership and borrowing is interesting.

Have you seen really small binaries?

Cargo is an amazing package manager that does everything for you.

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

What does it look like?

fn main() A

printin! ("S=mep, BangPypers!");

}.

What does it look like? Real Code this time.

fn main() {
let original_price = 51;
println! ("Your sale price is {}", sale_price(original_price));

fn sale_price(price: i32) — i32 {
if is_even(price) {
price - 10
} else {

price -

fn is_even(num: i32) — bool {
num % 2)

¥

What does it look like? More Real Code.

#{derive(Debug)]

struct Package {
sender_country: String,
recipient_country: String,
weight_in_grams: i32,

I

impl Package {
fn new(sender_country: String, recipient_country: String, weight_in_grams: i32) — Package {
if weight_in_grams < 0 {
panic! ("uh-oh! what do you mean that the weight is negative?");
} else {
return Package {
sender_country,
recipient_country,
weight_in_grams,

b
i

fn is_international(&self) — bool {
self.sender_country = self.recipient_country

b

fn get_fees(&self, cents_per_gram: i32) — 1i32 {
self.weight_in_grams * cents_per_gram

Iy

Memory Management in Rust: Scope and Mutability

let x = 14:

{
let mut x =
println! ("

X = 18;
println! ("

}

println! ("x

Memory Management in Rust: Movement

fn main() {
let x: String = "hello".to_string();
printin BELx Y= {E" B =

let y = x;
println!("y = {}", y);
prinEin BE =SB =

e You can’t keep passing variables around and copying them over without thinking.
e Rust’'s memory model is centered around Ownership and Borrowing.

https://docs.microsoft.com/en-us/learn/modules/rust-memory-management/
https://doc.rust-lang.org/stable/book/ch04-00-understanding-ownership.html

Memory Management in Rust: Movement - Compiler errors

The Rust analyzer tells us that we can’t use the value of x because it has moved.

And it also tells us that String doesn’t implement the Copy trait.

Traits are abilities types and structs can have in Rust.

You can implement a trait on any datatype. Some are installable while some need to be implemented
manually.

You can override traits to mess around, or to give your datatypes not-so-obvious features.

For instance, you want to use subtraction to remove a substring from a string, you can do that.

Think of it like overriding or implementing __dunder__ methods in Python. Note that this is a gross
trivialization of what traits are.

https://rust-analyzer.github.io/
https://doc.rust-lang.org/std/marker/trait.Copy.html

Memory Management in Rust: Borrowing

fn borrow_a_string(x: &str) {
println!("I've only borrowed a string. The value is {}", x);

i

fn move_a_string(x: String) {
println!("I've taken ownership of a string. The value is {}", x);

i

fn main() {
let v = String::from("The cake is a lie!");
borrow_a_string(&v);
move_a_string(v);
printlnl ("v={}", V);

Memory Management in Rust: Mutable Borrowing

fn append_to_a_vector(v: &mut Vec<u32>, a: u32) {
v.push(a);

i<

pub fn run() {
let mut x = vec![10, 20, 30, 40];
println! ("Initial Vector: {:?}", x);
append_to_a_vector(&mut x, 10);
println! ("Einal Vector: {:2}", x)i:

Strings in Rust

Strings are UTF-8

encoded in Rust. So a
string length might not
be what you think it is.

The docs explain it well.

(They use the
devanagiri script as an
example of why this is
not straightforward)

Ex: S=bm9,8 would not

be just 4 characters.

pub fn run() {

i

let x = "I
println! ("
println! ("

", X, x.as_bytes());
", X, x.chars().collect::<Vec<char>>());

http://www.youtube.com/watch?v=Mcuqzx3rBWc
https://doc.rust-lang.org/book/ch08-02-strings.html#bytes-and-scalar-values-and-grapheme-clusters-oh-my

Traits & Implementations

struct TrainedDog {
name: String

trait CanWave { s
fn get_name(&self) %v&:t“; impl CanWave for TrainedDog {
fn wave(&self) — String; fn get_name(sself) — &str {
Ip &self.name

struct Adult { fn wave(&self) — String {
name: St String: om("Woof! *waves pawx"

i

impl CanWave for Adult { struct Dog {
fn get_name(&self) — &str { name: String
&self.name i
¥ : fn wave_for_me(x: &impl CanWave) {
fn wave(&self) — string { . printint ("{} waves: ‘{}'", x.get_name(), x.wave());
String:: from("Hey look, I'm an adult waving!")

pub fn run() {
let kumar = Adult { name: "Kumar".to_string()};

struct child { let]l.JniOI‘ = Child {name: “Junn‘)r".tc,st*1:7:}()};

RanEe BEring let tiny = TrainedDog {name: "Tiny".to_string(};

FES st Al let chotu = Dog {na "Chotu".to_string()};
wave_for_me (&kumar) ;
impl CanWave for Child { r_me (&tiny);

n get_name(&self) — &str {

&self.name

Iy

fn wave(&self) — String { println! ("{} hasn't been trained to wave. Maybe you could teach him?", chotu.name);
String:: from("gaga, googoo. *waves handsx")

Strings in Rust

fn string_slice(arg: &str) {
printin! ("{}", arg);

Iy

fn string(arg: String) {

printtn! ("{}", arg);

I

fn run() {

string_slice("blue");

string("red".to_string());

string(String:: from("hi"));

string("rust is fun!".to_owned());

string("nice weather".into());

string(format! ("Interpolation {}", "Station"));
string_slice(&String:: from("abc")[0..1]);
string_slice(hello there ".trim());
string("Happy Monday!".to_string().replace("Mon", "Tues"));
string("my sHiFt KeY iS sTiCkY".to_lowercase());

The Module System

Cargo.lock
Cargo.toml
README . md
src
examples
ex01.
ex@2:
ex03.rs
ex04.
ex05.
ex06.
ex07.
ex08.rs
ex09.
mod.rs
[LibEirs
AES

[package]

name = "rust_for_pythonistas"
version = "0.1.0"

edition = "2021"

[dependencies]
structopt = "0.3.26"
log = "0.4.16"

2 directories, 15 files

How does Rust make me a better programmer?

o Types are not suggestions anymore.
o Datatypes really matter.

o Trait or interface oriented programming teaches you to think in terms of what an object can do
and not what it is.

e |'ve never thought about how my variables move in and out of scopes before.
o Closures are fun.
o Having control over which parts of your code can and cannot modify your variables lets you
think in a way you haven’t before.
e | need to account for everything I've written.

o When | use an enum variant in a match statement, | need to match for each and every case.
o | needto account for errors in the same way.
o | can define functions as having a return value that must be used and not ignored.

How do |I...

Create a GUI? Create a CLI? Write ML code?
Connect to a database? Create a game? Write a linked 1list?
Create a web Connect to the Ethereum Configure mv IDE?
- - . g y :
application? Blockchain?
Write async code? Write web assembly code? Start learning?

https://www.areweguiyet.com/
https://rust-cli.github.io/book/index.html
https://www.arewelearningyet.com/
https://www.sea-ql.org/SeaORM/
https://arewegameyet.rs/
https://rust-unofficial.github.io/too-many-lists/
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://ethereum.org/en/developers/docs/programming-languages/rust/
https://ethereum.org/en/developers/docs/programming-languages/rust/
https://areweideyet.com/
https://areweasyncyet.rs/
https://rustwasm.github.io/
https://doc.rust-lang.org/stable/book/

Resources

—

The Rust Book (Official Docs)

2. CS 4414 - Operating Systems - Using Rust for an Undergrad OS Course
(Reasons to Use Rust)

3. A Half-Hour to Learn Rust (Blog Article)

4. Rustlings - Interactive Exercises (Official companion exercises)

5. Let’s Get Rusty - The Rust Lang Book (Videos)

6. Rustin Action (Book)

/. Rust for Rustaceans (Book)

8. Zero to Prod (Book)

9. Example Code & Project Structure

https://doc.rust-lang.org/stable/book/
http://rust-class.org/0/pages/using-rust-for-an-undergraduate-os-course.html
https://fasterthanli.me/articles/a-half-hour-to-learn-rust
https://github.com/rust-lang/rustlings/
https://www.youtube.com/playlist?list=PLai5B987bZ9CoVR-QEIN9foz4QCJ0H2Y8
https://www.manning.com/books/rust-in-action
https://rust-for-rustaceans.com/
https://www.zero2prod.com/
https://github.com/stonecharioteer/blog/tree/master/talks/2022/bangpypers/rust_for_pythonistas

