
$ python -m this | sed -n ‘4p’

Explicit is better than implicit.
Rust for Pythonistas

Vinay Keerthi @stonecharioteer
Data @ Merkle Science

2022-03-26
BangPypers



$ whoami

● Hi! I’m Vinay Keerthi, I go by @stonecharioteer everywhere.
● I blog at stonecharioteer.com
● Self-taught
● I have been using Python for 8 years.
● I build web applications (flask), command line tools (click), sometimes a GUI 

(PyQt5/Plotly Dash), and automate pipelines (airflow, flask-scheduler).
● Currently Data Engineering @ Merkle Science, a cryptocurrency analytics firm.
● Previously @ Visa, GKN Driveline, Flipkart
● I’ve been writing Rust code for ~30 days. Beware the errors.

https://stonecharioteer.com


What’s with the title?

● The Zen of Python states “Explicit is better than implicit”
● Rust embodies this to a fault, and is a natural successor to the ideal.



What is this talk about?

Note: This is not a Rust tutorial.

● Why Rust?
● I already know Python.
● Then why would I learn Rust?
● Why not X?
● What does it look like?
● How do I learn?
● Numbers?
● I’ve heard Strings are hard.



Why Rust?

● I’ve been writing Python code my entire career.
● I wanted to try something new.
● I’d tried some golang resources, but I’d kept coming back to Rust.
● I first heard about Rust on news.ycombinator.com (HackerNew/HN).
● What did I know?

○ Rust is fast.
○ Rust has a steep learning curve.
○ It’s low level.
○ It’s got something called the borrow checker.
○ Strings are weird?



But I already know Python!

● And that’s good.
● Use what you know for the problems that you want to solve quickly.
● Python can do almost anything. If you need to scale, think about distributing 

your tasks across workers.
● Use Pandas, Numpy, and other libraries designed for speed over native data 

types.
● Use Cython or PyCuda to write faster code.
● Try PyPy for JIT - it’s faster.



Then why would I learn Rust?

● Shipping python applications is getting harder.
○ There is a paradox of choice: poetry, pyenv, virtualenvwrapper, flit, conda.
○ There are ways to ship a single binary, but they ship the python interpreter.

● If you’re self-taught, like me, you should learn a lower level language.
○ Python doesn’t teach you about memory management.
○ What are threads, really?
○ How do you implement a truly safe multi-threaded application?
○ How does the memory model work?

● Rust gives you simple and safe concurrency.
● To become a better programmer.

○ More on this later.



Why not X?

● X is usually Golang, Java, C++ or C.
● Follow your instinct. Learn what you want to.
● Performance matters, and it should.
● Ownership and borrowing is interesting.
● Have you seen really small binaries?
● Cargo is an amazing package manager that does everything for you.

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html


What does it look like?



What does it look like? Real Code this time.



What does it look like? More Real Code.



Memory Management in Rust: Scope and Mutability



Memory Management in Rust: Movement

● You can’t keep passing variables around and copying them over without thinking.
● Rust’s memory model is centered around Ownership and Borrowing.

https://docs.microsoft.com/en-us/learn/modules/rust-memory-management/
https://doc.rust-lang.org/stable/book/ch04-00-understanding-ownership.html


Memory Management in Rust: Movement - Compiler errors

● The Rust analyzer tells us that we can’t use the value of x because it has moved.
● And it also tells us that String doesn’t implement the Copy trait.
● Traits are abilities types and structs can have in Rust.
● You can implement a trait on any datatype. Some are installable while some need to be implemented 

manually.
● You can override traits to mess around, or to give your datatypes not-so-obvious features.
● For instance, you want to use subtraction to remove a substring from a string, you can do that.
● Think of it like overriding or implementing __dunder__ methods in Python. Note that this is a gross 

trivialization of what traits are.

https://rust-analyzer.github.io/
https://doc.rust-lang.org/std/marker/trait.Copy.html


Memory Management in Rust: Borrowing



Memory Management in Rust: Mutable Borrowing



Strings in Rust

● Strings are UTF-8 
encoded in Rust. So a 
string length might not 
be what you think it is.

● The docs explain it well. 
(They use the 
devanagiri script as an 
example of why this is 
not straightforward)

● Ex: ನಮಸಾ್ಕಾರ would not 
be just 4 characters.

http://www.youtube.com/watch?v=Mcuqzx3rBWc
https://doc.rust-lang.org/book/ch08-02-strings.html#bytes-and-scalar-values-and-grapheme-clusters-oh-my


Traits & Implementations



Strings in Rust



The Module System



How does Rust make me a better programmer?

● Types are not suggestions anymore.
○ Datatypes really matter.
○ Trait or interface oriented programming teaches you to think in terms of what an object can do 

and not what it is.

● I’ve never thought about how my variables move in and out of scopes before.
○ Closures are fun.
○ Having control over which parts of your code can and cannot modify your variables lets you 

think in a way you haven’t before.

● I need to account for everything I’ve written.
○ When I use an enum variant in a match statement, I need to match for each and every case.
○ I need to account for errors in the same way.
○ I can define functions as having a return value that must be used and not ignored.



How do I…

Create a GUI? Create a CLI? Write ML code?

Connect to a database? Create a game? Write a linked list?

Create a web 
application?

Connect to the Ethereum 
Blockchain? Configure my IDE?

Write async code? Write web assembly code? Start learning?

https://www.areweguiyet.com/
https://rust-cli.github.io/book/index.html
https://www.arewelearningyet.com/
https://www.sea-ql.org/SeaORM/
https://arewegameyet.rs/
https://rust-unofficial.github.io/too-many-lists/
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://ethereum.org/en/developers/docs/programming-languages/rust/
https://ethereum.org/en/developers/docs/programming-languages/rust/
https://areweideyet.com/
https://areweasyncyet.rs/
https://rustwasm.github.io/
https://doc.rust-lang.org/stable/book/


Resources

1. The Rust Book (Official Docs)
2. CS 4414 - Operating Systems - Using Rust for an Undergrad OS Course 

(Reasons to Use Rust)
3. A Half-Hour to Learn Rust (Blog Article)
4. Rustlings - Interactive Exercises (Official companion exercises)
5. Let’s Get Rusty - The Rust Lang Book (Videos)
6. Rust in Action (Book)
7. Rust for Rustaceans (Book)
8. Zero to Prod (Book)
9. Example Code & Project Structure

https://doc.rust-lang.org/stable/book/
http://rust-class.org/0/pages/using-rust-for-an-undergraduate-os-course.html
https://fasterthanli.me/articles/a-half-hour-to-learn-rust
https://github.com/rust-lang/rustlings/
https://www.youtube.com/playlist?list=PLai5B987bZ9CoVR-QEIN9foz4QCJ0H2Y8
https://www.manning.com/books/rust-in-action
https://rust-for-rustaceans.com/
https://www.zero2prod.com/
https://github.com/stonecharioteer/blog/tree/master/talks/2022/bangpypers/rust_for_pythonistas

